
1

Armstrong State University
Engineering Studies

MATLAB Marina – Characters and Strings Primer

Prerequisites
The Characters and Strings Primer assumes knowledge of the MATLAB IDE, MATLAB help,
arithmetic operations, built in functions, scripts, variables, arrays, logic expressions, conditional
structures, iteration, functions, and debugging. Material on these topics is covered in the
MATLAB Marina Introduction to MATLAB module, MATLAB Marina Variables module, MATLAB
Marina Arrays module, MATLAB Marina Logic Expressions module, MATLAB Marina Conditional
Structures module, MATLAB Marina Iteration module, MATLAB Marina Functions module, and
MATLAB Marina Debugging module.

Learning Objectives
1. Be able to use MATLAB’s built in functions to read in and display numeric and string data.
2. Be able to convert characters to their equivalent ASCII value.
3. Be able to convert numeric data to strings for display.
4. Be able to format input and output using strings.
5. Be able to write MATLAB programs and functions that operate on strings.

Terms
character, string, ASCII, Unicode, type casting

MATLAB Functions, Keywords, and Operators
char, int8, uint8, strcmp, isspace, int2str, num2str, sprintf, fprintf, sscanf, fscanf, format

Characters
Characters are single lower or upper case letters, numbers, punctuation, or special characters.
Characters are typically represented in computer systems using either ASCII or Unicode. The
American Standard Code for Information Interchange (ASCII) uses 7-bits (8 bits for extended
ASCII) to represent characters. It is commonly used to for transferring characters between input
and output devices, for example from a computer keyboard to the computer. Unicode provides
a unique coding for every character in almost every language and is platform and program
independent. Unicode uses a 16-bit coding scheme to represent characters (4 hexadecimal
digits). Since ASCII is a 7-bit code, up to 27 = 128 characters can be represented. Unicode can
represent 216 = 65536 characters. The first 128 codes (0000 to 007F) in Unicode correspond to
the 128 ASCII codes. See http://unicode.org/ and http://www.unicode.org/charts/

MATLAB represents characters in ASCII. The ASCII code set can be found at the URL
http://www.asciitable.com/. Character literals are specified in MATLAB using single quotes, for
example 'a', '!', '7'.

http://unicode.org/
http://www.unicode.org/charts/
http://www.asciitable.com/

2

Strings
Strings have been used so far as text prompts with the MATLAB input function, as display and
error messages with the MATLAB disp and error functions, and as labels and titles for plots.
Strings are 1D arrays of characters (row vector of characters). String literals can be created by
enclosing one or more characters in single quotes, for example: 'Dog', '4 dogs and 1
cat', and '4 – 6 = -2'.

Since a string is a 1D array of characters, functions such as length and size and operations
such as indexing can be performed on strings. Figure 1 shows examples of using the length
function on strings and indexing strings.

Typecasting
MATLAB’s default data type is a real number. Casting allows one to convert data of one type to
another type. Characters and strings can be cast to their ASCII equivalents, characters can be
case to a single integer, and strings can be cast to an array of integers of the same length as the
string.

The char function converts an array of positive integers to an array of characters. For example,
char(72) is A, char(105) is i. Characters can also be cast to integers corresponding to
their ASCII value with the int8 or uint8 operator. For example int8('d') returns 100
and uint8('*') returns 42. The char function can also be used to create a string,
char([65, 82, 34, 67]) returns AR"C. The int8 and unit8 operators can be used to
convert a string to an array of integers. Figure 2 shows an example of using the int8 operator
to convert a string to an array of integers.

Casting is useful when we want to perform certain operations on characters and the desired
operation or function is not be defined for characters.

>> name = 'Lucy the Dog';
>> length(name)
ans = 12
>> name(1:3)
ans = Luc
>> name(2:6)
ans = ucy t

Figure 1, Length and Indexing Strings

>> name = 'Lucy the Dog';
>> int8(name)
ans = 76 117 99 121 32 116 104 101 32 100 111 103

Figure 2, Casting a String to an Array of Integers

3

Operating on Characters and Strings
Characters and strings can be concatenated (appended to each other) as vectors can. Figure 3
shows an example of string concatenation. MATLAB also has a built in strcat function for
concatenating strings.

Arithmetic operations can be performed on strings but one must be careful when doing this.
MATLAB will convert the string to a vector of integers (ASCII equivalent) and perform the
arithmetic operation on the vector of integers yielding a vector of numbers as the result. For
example, adding 1 to the string 'Lucydog' adds one to the ASCII equivalent of each character
in the string and results in a vector of numbers. The numbers (as long as they are integers in
ASCII code range) can be cast to characters.

Remember that strings are arrays of characters. The same restrictions on arithmetic operations
with vectors and arrays also apply to strings.

String Comparison
Strings can be compared using the same logical operators as for numbers >, <, >=, <=, = =, ~=
(this is possible since MATLAB converts characters to their ASCII number), however, since
strings are vectors the strings to be compared must be the same length (or one must have
length 1). If strings of the same length are compared using the logical operators, the result is a
vector of the same length with ones in the places where the characters in the strings match and
zeros in the other places. If a string is compared to a character, the result is a vector of the
same length as the string with ones in the places where the string elements match the
character and zeros in the other places.

>> firstname = ['L','u','c','y']
firstname = Lucy
>> lastname = 'Dog';
>> name = [firstname, ' ', lastname]
name = Lucy Dog
>> name = [firstname, lastname]
name = LucyDog % same as before but without the separating space

Figure 3, String Concatenation

>> name = 'LucyDog'
name = LucyDog
>> name+1
ans = 77 118 100 122 69 112 104
>> char(name+1)
ans = MvdzEph

Figure 4, Adding One to each Element of a String

4

MATLAB has a built in string compare function, strcmp, that allows one to compare two
strings. The strcmp function returns true if the strings are identical (same length and
composed of same characters) and false otherwise. MATLAB also has a built in function,
isspace, to test if a character is a space. The strcmp function can also be used on cell
arrays. Cell arrays will be covered later.

Arrays of Strings
Arrays of strings are 2D arrays of characters. MATLAB allows arrays of strings as long as each
string in the array is the same length or the strings are padded with some character such as a
space to make all of the strings the same length. The MATLAB statements in Figure 6a show two
ways to create a 3 by 6 array of characters. Each row in the 2D array is a string of length six (a 1
by 6 array of characters).

The MATLAB statement in Figure 6b has a syntax error since the strings are not the same length
and MATLAB will not allow creation of a 2D array with different row lengths. Padding each
string to make the length 6 as was done in Figure 6a, allows the creating of an array of an array
of three strings (3 by 6 array of characters).

>> string1 = 'lucy';
>> string2 = 'Lucy';
>> string3 = 'dd';
>> string1 == string2
ans = 0 1 1 1
>> string1 == 'L'
ans = 0 0 0 0
>> string1 <= 'u'
ans = 1 1 1 0
>> string1 == string3
??? Error using ==> eq
Matrix dimensions must agree.

Figure 5, String Comparison using Logical Operators

>> arrayOfSstrings = ['Bob ' ; 'Sally ' ; 'Sluggo'];
>> name1 = 'Bob '; % second way
>> name2 = 'Sally ';
>> name3 = 'Sluggo';
arrayOfSstrings(1,:) = name1;
arrayOfSstrings(2,:) = name2;
arrayOfSstrings(3,:) = name3;

Figure 6a, Array of Strings

5

The character casting function char can be used to create arrays of strings. The char function
when given a list of strings as arguments will pad each string with spaces to make all the strings
the same length and then vertically concatenate them to create an array of strings.

Formatted Input and Output
We have already seen that we can input strings from the user using the input function and
display strings with the disp function. The input function takes a string, displays it in the
command window, and takes an input from the user that can be assigned to a variable. By
adding a second argument ‘s’ after the text prompt the input function will automatically treat
what is entered as a string (otherwise it attempts to evaluate the expression entered).

In the first set of statements in Figure 7, the assignment expects the expression to evaluate to a
number and when it does not, an error occurs. In the second set of statements in Figure 7, the
's' argument means the input is interpreted as a string and the string 'a' is returned and
assigned to the variable res. In the third set of statements in Figure 7, the entered expression
5+6 is evaluated and the numeric result is returned and assigned to the variable res. In the

>> arrayOfSstrings = ['Bob' ; 'Sally' ; 'Sluggo'];
??? Error using ==> vertcat
CAT arguments dimensions are not consistent.

Figure 6b, Error in Creating an Array of Strings

>> arrayOfSstrings = char('Bob','Sally','Sluggo');

Figure 6c, Array of Strings

>> res = input('Enter a letter: ')
Enter a letter: a
??? Error using ==> input
Undefined function or variable 'a'.

>> res = input('Enter a letter: ','s')
Enter a letter: a
res = a

>> res = input('Enter an expression: ');
Enter an expression: 5 + 6
res = 11

>> res = input('Enter an expression: ','s');
Enter an expression: 5+6
res = 5+6

Figure 7, Reading Strings using input Function

6

fourth set of statements in Figure 7, the 's' argument means the input is interpreted as a
string and the string '5+6' is returned and assigned to the variable res.

The disp function will display an array without displaying the array name. If the array is a
string, the text in the string is displayed. MATLAB has other useful commands for formatting
input and output, such as fprintf, sprintf, fscanf, sscanf , int2str, num2str,
and format. The functions int2str and num2str are used to convert numbers to strings.
They can then be appended onto another string and displayed.

The functions sprintf and fprintf allow one to format data and write it to either a string
or a file using conversion specifications. The function fprintf can also be used to write data
to the Command Window. The fscanf and sscanf allow one to input data using conversion
specifications. When displaying formatted output in the Command Window, fprintf takes a
format string and one or more pieces of data and displays the formatted data. The format string
will contain one or more conversion specifications consisting of the % character, a conversion
character, and additional flags/fields for certain conversion characters. The format string may
also contain control characters indicated by the backslash character such as \n for a newline.
The data to be formatted and substituted in place of the conversion specifications are provided
in the same order as the specification and are separated by commas.

Figure 8a shows an example of using fprintf to display formatted output and Figure 8b
shows an example using int2str, num2str, sprintf, and disp to display the same
formatted output.

The conversion specification %d is for signed integers, %s is for strings, and %f is for fixed point
numbers (real numbers). The parameters -8.2 for the %f conversion specification indicate
that the number should be left justified, displayed in a maximum of eight places, and have a
precision of two places to left of decimal point. The full list of conversion specifications and
control characters can be found in MATLAB’s fprintf help.

>> k = 2;
>> fprintf('Employee %d ',k);
Employee 2

>> fprintf('Bob Smith %d %d', 5, 5000);
Bob Smith 5 5000

>> fprintf('%s, Employee %d made $%-8.2f \n', 'Bob', 2, 572.45);
Bob, Employee 2 made $572.45

Figure 8a, Formatting and Displaying Output using fprintf

7

The functions fprintf and sprint provide more flexibility and control formatting data for
output and are their use is generally preferable to string concatenation. The disp function
automatically generates a newline so the newline is often not needed when formatting a string
for display using disp.

Convert Uppercase to Lowercase Function
Write a MATLAB function to convert all uppercase letters in a string to lowercase letters.
Letters that are lowercase, punctuation, spaces, numbers, etc. should be left alone.

The convert only uppercase letters in a string to lowercase letters:
• The function will need the string to parse.
• The function will return the string with uppercase letters converted to lowercase letters.
• The function will need to determine for each character whether it is an uppercase or letter

or not. This will require a conditional statement.
• If the character is an uppercase letter, the function will need to determine the equivalent

lowercase letter and replace the uppercase letter with the lowercase letter. This will require
adding 32 to the ASCII equivalent of the uppercase letter; casting the result to a character,
and assigning the new character to the appropriate location of the string (same string index
as the uppercase letter).

• The determination of uppercase and replacement if necessary must be done for all the
characters in the string. This will require a loop that iterates over the characters in the
string.

>> k = 2;
>> disp(['Employee ' int2str(k)]);
Employee 2

>> k = 2;
>> displayText = sprintf('Employee %d ',k);
>> disp(displayText)
Employee 2

>> displayText = sprintf('%s, Employee %d made $%-8.2f \n', 'Bob',
2, 572.45);
>> disp(displayText)
Bob, Employee 2 made $572.45

>> k = 2;
>> name = 'Bob';
>> disp([name ', Employee ' int2str(k) ' made $' num2str(572.45)]);
Bob, Employee 2 made $572.45

Figure 8b, Formatting and Displaying Output using int2str, num2str, sprintf, and disp

8

It will be helpful to start by developing a function that will work for a single character and then
modifying it to work for a string (array of characters). The function should be tested for the
following cases: empty string, single lowercase character, single uppercase character, single
non-letter character, and a string with uppercase letters and lowercase letters and non-letters.
Figures 9a, 9b, 9c, and 9d show the final converttoLowercase function that works for a
string, the initial converttoLowercase function that works for a single character, the test
program, and the output of the test program respectively.

Note that in the test results the test case of an empty string yields an empty string so it is not
seen in the display.

function result = converttoLowercase(str)
% ---
% converttoLowercase converts uppercase letters in a string
% to lowercase
% ---
% Syntax: result = converttolowercase(str)
% str is the string to convert
% result is the string with letters all lowercase
% ---
% Notes: uppercase letters A to Z are ASCII 65 to 90
% lowercase letters a to z are ASCII 97 to 122
% ---
lengthString = length(str);
if (lengthString > 0)
 result = str;
 for k = 1:1:lengthString
 charValue = int8(result(k));
 if (charValue >= 65 && charValue <= 90)
 result(k) = char(charValue + 32);
 end
 end
else
 result = '';
end

end

Figure 9a, converttoLowercase Function

9

Last modified Thursday, November 13, 2014

This work by Thomas Murphy is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0
Unported License.

a
a
!
hello there lucille.
>>

Figure 9d, Test Results for converttolowercase Function

teststring1 = '';
teststring2 = 'a';
teststring3 = 'A';
teststring4 = '!';
teststring5 = 'Hello there Lucille.';
r = converttoLowercase(teststring1);
disp(r)
r = converttolowercase(teststring2);
disp(r)
r = converttoLowercase(teststring3);
disp(r)
r = converttoLowercase(teststring4);
disp(r)
r = converttoLowercase(teststring5);
disp(r)

Figure 9c, Test Program for converttoLowercase Function

function result = converttoLowercase(ch)
result = ch;
charValue = int8(ch);
if (charValue >= 65 && charValue <= 90)
 result = char(charValue + 32);
end

end

Figure 9b, converttoLowercase Function for a Single Character

http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US

	Prerequisites
	Learning Objectives
	Terms
	MATLAB Functions, Keywords, and Operators
	Characters
	Strings
	Typecasting
	Operating on Characters and Strings
	String Comparison
	Arrays of Strings
	Formatted Input and Output
	Convert Uppercase to Lowercase Function

